skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Joonho"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2026
  2. In this work we demonstrate that accurate ground state wave functions may be constructed for polarons in a fully ab initio setting across the wide range of couplings associated with both the large and small polaron limits. We present a single general unitary transformation approach which encompasses an ab initio version of the Lee-Low-Pines theory at weak coupling and the coherent state Landau-Pekar framework at strong coupling while interpolating between these limits in general cases. We show that perturbation theory around these limits may be performed in a facile manner to assess the accuracy of the approach, as well as provide an independent route to the ab initio properties of polarons. We test these ideas on the case of LiF, where the electron-polaron is expected to be large and relatively weakly coupled, while the hole-polaron is expected to be a strongly coupled small polaron. 
    more » « less
  3. Unknown (Ed.)
    We present a method for calculating first-order response properties in phaseless auxiliary field quantum Monte Carlo by applying automatic differentiation (AD). Biases and statistical efficiency of the resulting estimators are discussed. Our approach demonstrates that AD enables the calculation of reduced density matrices with the same computational cost scaling per sample as energy calculations, accompanied by a cost prefactor of less than four in our numerical calculations. We investigate the role of self-consistency and trial orbital choice in property calculations. We find that orbitals obtained using density functional theory perform well for the dipole moments of selected molecules compared to those optimized self-consistently. 
    more » « less
  4. We present efficient algorithms for using selected configuration interaction (sCI) trial wave functions in phaseless auxiliary field quantum Monte Carlo (ph-AFQMC). These advances, geared toward optimizing computational performance for longer configuration interaction expansions, allow us to use up to a million configurations in the trial state for ph-AFQMC. In one example, we found the cost of ph-AFQMC per sample to increase only by a factor of about 3 for a calculation with 10 4 configurations compared to that with a single one, demonstrating the tiny computational overhead due to a longer expansion. This favorable scaling allows us to study the systematic convergence of the phaseless bias in auxiliary field quantum Monte Carlo calculations with an increasing number of configurations and provides a means to gauge the accuracy of ph-AFQMC with other trial states. We also show how the scalability issues of sCI trial states for large system sizes could be mitigated by restricting them to a moderately sized orbital active space and leveraging the near-cancellation of out of active space phaseless errors. 
    more » « less
  5. Abstract Interacting many-electron problems pose some of the greatest computational challenges in science, with essential applications across many fields. The solutions to these problems will offer accurate predictions of chemical reactivity and kinetics, and other properties of quantum systems 1–4 . Fermionic quantum Monte Carlo (QMC) methods 5,6 , which use a statistical sampling of the ground state, are among the most powerful approaches to these problems. Controlling the fermionic sign problem with constraints ensures the efficiency of QMC at the expense of potentially significant biases owing to the limited flexibility of classical computation. Here we propose an approach that combines constrained QMC with quantum computation to reduce such biases. We implement our scheme experimentally using up to 16 qubits to unbias constrained QMC calculations performed on chemical systems with as many as 120 orbitals. These experiments represent the largest chemistry simulations performed with the help of quantum computers, while achieving accuracy that is competitive with state-of-the-art classical methods without burdensome error mitigation. Compared with the popular variational quantum eigensolver 7,8 , our hybrid quantum-classical computational model offers an alternative path towards achieving a practical quantum advantage for the electronic structure problem without demanding exceedingly accurate preparation and measurement of the ground-state wavefunction. 
    more » « less